
DataFrames - Part 1
Last updated on 2024-10-18 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Dataframes 1: Import DataDataframes 1: Import Data

OVERVIEW

Questions

What is a Dataframe, and how can we read data into one?

What are the different methods for manipulating data in Dataframes?

What makes data visualisation simple, in Python?

Objectives

Import a dataset as a Pandas Dataframe

Inspect a Dataframe and access data

Produce an overview of data features

Create data plots using Matplotlib

Data Handling

https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/01-data_frames_1.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/01-data_frames_1.Rmd
http://127.0.0.1:3159/01-data_frames_1.pdf
http://127.0.0.1:3159/01-data_frames_1.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=jdWOAzK81VE

Dataframes 1: Basic StatisticsDataframes 1: Basic Statistics

Dataframes 1: Data VisualisationDataframes 1: Data Visualisation

Indexing of arrays

For-loop through an array

Basic statistics (distributions, mean, median and standard deviation)

Challenge: The diabetes dataset
Here is a screenshot of a diabetes dataset. It is taken from this webpage, and is one of the example datasets used to illustrate machine
learning functionality in scikit-learn (Part II of the L2D course).

PREREQUISITES

https://www.youtube.com/watch?v=zw6t3yHEqGU
https://www.youtube.com/watch?v=mljXcIzx4ps
https://github.com/L2D-July2024-Part-I/Basic_Python/04-arrays.html#sec:list:indexing
https://github.com/L2D-July2024-Part-I/Basic_Python/05-iterations.html#retaining-the-new-values
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html

This figure captures only the top part of the data. On the webpage, you will need to scroll down considerably to view all of it. Thus, our first
data science task, will be to obtain an overview of this datset.

Introduces code to read and inspect the data

Works with a specific Dataframe and explains methods used to get an overview of the data

Discusses the concept of ‘distribution’ as a way of summarising data within a single figure

Access the data

Check the content

Produce a summary of basic properties

In this lesson we will look solely at univariate features, where each data columns are studied independently of the others in the
datasets. Further properties and bivariate features will be the topic of the next lesson.

Work-Through Example

The small practice data file for this section is called ‘everleys_data.csv’, and can be downloaded using the link given above in
Summary and Setup for this Lesson. To start, please create a subfolder called ‘data’ in the current directory and put the data file in it.
It can now be accessed using the relative path data/everleys_data.csv or data\everleys_data.csv, respectively.

The file everleys_data.csv contains serum concentrations of calcium and sodium ions, sampled from 17 patients with Everley’s
syndrome - a rare genetic disorder that results in sufferers experiencing developmental delays, intellectual and physical
abnormalities. The data are taken from a BMJ statistics tutorial, and are stored as comma-separated values (csv): with two values
given for each patient.

To get to know a dataset, we will use the Pandas package and the Matplotlib plotting library. The Pandas package for data science
is included in the Anaconda distribution of Python. Check this link for installation instructions to get started.

If you are not using the Anaconda distribution, please refer to these guidelines.

In order to use the functions contained in Pandas, they must first to be imported. Since our dataset is in a ‘.csv’ file, we must first read
it from a csv file. For this, we must import the function read_csv, which will create a Pandas DataFrame from data provided in a
‘.csv’ file.

THE LESSON

TO FAMILIARISE YOURSELF WITH A DATASET YOU NEED TO:

READING DATA INTO A PANDAS DATAFRAME

http://127.0.0.1:3159/index.html#setup
https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/7-t-tests
https://pandas.pydata.org/getting_started.html
https://pandas.pydata.org/docs/getting_started/install.html

Executing this code does not lead to any output on the screen. However, the function is now ready to be used. To use it, we type its name and
provide the required arguments. The following code should import the Everley’s data into your Python Notebook:

Note the orientation of backward and forward slashes that differentiate filepaths given between Unix-based systems, and Windows. This
code uses the read_csv function from Pandas to read data from a data file, in this case a file with extension ‘.csv’. Note that the location of
the data file is specified within quotes by the relative path to the subfolder ‘data’, followed by the file name. Use your file browser or the
browser in JupyterLab (or an ‘Explorer’-type pane in your IDE of choice) to check that subfolder does indeed exists, and contains the file
within it.

from pandas import read_csv

PYTHON

For Mac OS X and Linux:
(please go to the next cell if using Windows)

df = read_csv("data/everleys_data.csv")

PYTHON

For Windows:

df = read_csv("data\everleys_data.csv")

PYTHON

After execution of the code, the data are contained in a variable called df. This is a structure referred to as a Pandas DataFrame.

A Pandas DataFrame is a 2-dimensional labelled data structure, with columns of (potentially different)
types. You can think of it as a spreadsheet.

To see the contents of df, simply use:

df

PYTHON

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe

(Compare with the result of print(df) which displays the contents in a different format.)

The output shows in the first column an index, integers from 0 to 17; and the calcium and sodium concentrations in columns 2 and 3,
respectively. The default indexing starts from zero (Python is a ‘zero-based’ programming language).

In a DataFrame, the first column is referred to as Indices, the first row is referred to as Labels. Note that the row with the labels is excluded
from the row count. Similarly, the row with the indices is excluded from the column count.

For large datasets, the function head is a convenient way to get a feel of the dataset.

Without any input argument, this displays the first five data lines of data i the newly-created DataFrame. You can specify and alter the
number of rows displayed by including a single integer as argument, e.g. head(10).

If you feel there are too many decimal places in the default view, you can restrict their number by using the round method. The numerical
argument that you provide in the round parentheses controls the number of decimal places the method rounds to, with digits up to 5 being
rounded down, and above (and inclusive of) 5, being rounded up:

 calcium sodium
0 3.455582 112.690980
1 3.669026 125.663330
2 2.789910 105.821810
3 2.939900 98.172772
4 5.426060 97.931489
5 0.715811 120.858330
6 5.652390 112.871500
7 3.571320 112.647360
8 4.300067 132.031720
9 1.369419 118.499010
10 2.550962 117.373730
11 2.894129 134.052390
12 3.664987 105.346410
13 1.362779 123.359490
14 3.718798 125.021060
15 1.865868 112.075420
16 3.272809 117.588040
17 3.917591 101.009870

OUTPUT

df.head()

PYTHON

 calcium sodium
0 3.455582 112.690980
1 3.669026 125.663330
2 2.789910 105.821810
3 2.939900 98.172772
4 5.426060 97.931489

OUTPUT

df.head().round(2)

PYTHON

While it is possible to see how many rows there are in a DataFrame by displaying the whole DataFrame and looking at the last index, there is
a convenient way to obtain this number, directly:

You could see above, that the columns of the DataFrame have labels. To see all labels:

Now we can count the labels to obtain the number of columns:

And if you want to have both the number of the rows and the number columns displayed together, you can use the shape method. Shape
returns a tuple of two numbers: the first is the number of rows, and the second is the number of columns.

 calcium sodium
0 3.46 112.69
1 3.67 125.66
2 2.79 105.82
3 2.94 98.17
4 5.43 97.93

OUTPUT

no_rows = len(df)

print('DataFrame has', no_rows, 'rows')

PYTHON

DataFrame has 18 rows

OUTPUT

column_labels = df.columns

print(column_labels)

PYTHON

Index(['calcium', 'sodium'], dtype='object')

OUTPUT

no_columns = len(column_labels)

print('DataFrame has', no_columns, 'columns')

PYTHON

DataFrame has 2 columns

OUTPUT

Notice that shape (like columns) is not followed by round parentheses. It is not a function that can take arguments. Technically, shape is a
‘property’ of the DataFrame.

To find out what data type is contained in each of the columns, us dtypes, another ‘property’:

In this case, both columns contain floating point (decimal) numbers.

Read data into a DataFrame

Download the data file ‘loan_data.csv’ using the link given above in Summary and Setup for this Lesson”. It contains data that can
be used for the assessment of loan applications. Read the data into a DataFrame. It is best to assign it a name other than ‘df’ (to
avoid overwriting the Evereley dataset).

Display the first ten rows of the Loan dataset to see its contents. It is taken from a tutorial on Data Handling in Python which you
might find useful for further practice.

From this exercise we can see that a DataFrame can contain different types of data: real numbers
(e.g. LoanAmount), integers (ApplicantIncome), categorical data (Gender), and strings (Loan_ID).

df_shape = df.shape

print('DataFrame has', df_shape[0], 'rows and',df_shape[1], 'columns')

PYTHON

DataFrame has 18 rows and 2 columns

OUTPUT

df.dtypes

PYTHON

calcium float64
sodium float64
dtype: object

OUTPUT

PRACTICE EXERCISE 1

http://127.0.0.1:3159/index.html#setup
https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-learn-data-science-python-scratch-2/

Solution

Accessing data in a DataFrame
If a datafile is large and you only want to check the format of data in a specific column, you can limit the display to that column. To access
data contained in a specific column of a DataFrame, we can use a similar convention as in a Python dictionary, treating the column names as
‘keys’. E.g. to show all rows in column ‘Calcium’, use:

from pandas import read_csv
dataframe from .csv file
df_loan = read_csv("data/loan_data.csv")
display contents
df_loan.head(10)

PYTHON

 Loan_ID Gender Married ... Loan_Amount_Term Credit_History Property_Area
0 LP001015 Male Yes ... 360.0 1.0 Urban
1 LP001022 Male Yes ... 360.0 1.0 Urban
2 LP001031 Male Yes ... 360.0 1.0 Urban
3 LP001035 Male Yes ... 360.0 NaN Urban
4 LP001051 Male No ... 360.0 1.0 Urban
5 LP001054 Male Yes ... 360.0 1.0 Urban
6 LP001055 Female No ... 360.0 1.0 Semiurban
7 LP001056 Male Yes ... 360.0 0.0 Rural
8 LP001059 Male Yes ... 240.0 1.0 Urban
9 LP001067 Male No ... 360.0 1.0 Semiurban

[10 rows x 12 columns]

OUTPUT

df['calcium']

PYTHON

To access individual rows of a column we use two pairs of square brackets:

Here all rules for slicing can be applied. As for lists and tuples, the indexing of rows is semi-inclusive, with the lower boundary included and
upper boundary excluded. Note that the first pair of square brackets refers to columns, and the second pair refers to the rows. However, this
is different from accessing items in a nested list, for instance.

Accessing items in a Pandas DataFrame is analogous to accessing the values in a Python dictionary by referring to its keys.

To access non-contiguous elements, we use an additional pair of square brackets (as if for a list within a list):

Another method for indexing and slicing a DataFrame is to use the ‘index location’ or iloc property. Note that properties in Python differ
from methods. Syntactically, they use the same dot notation we are accustomed to with methods, but they differ in their use of square

0 3.455582
1 3.669026
2 2.789910
3 2.939900
4 5.426060
5 0.715811
6 5.652390
7 3.571320
8 4.300067
9 1.369419
10 2.550962
11 2.894129
12 3.664987
13 1.362779
14 3.718798
15 1.865868
16 3.272809
17 3.917591
Name: calcium, dtype: float64

OUTPUT

df['calcium'][0:3]

PYTHON

0 3.455582
1 3.669026
2 2.789910
Name: calcium, dtype: float64

OUTPUT

df['calcium'][[1, 3, 7]]

PYTHON

1 3.669026
3 2.939900
7 3.571320
Name: calcium, dtype: float64

OUTPUT

https://docs.python.org/3/tutorial/introduction.html

brackets, rather than the round parentheses that methods operate with. A property also refers directly to a specific attribute of an object.

In this example iloc refers first to the rows of data, and then to columns - by index; all contained within a single pair of brackets. For
example, to obtain all the rows of the first column (index 0), you use:

To display only the first three calcium concentrations, slicing is used: note that the upper boundary is excluded):

To access non-consecutive values, we can use a pair of square brackets within the outer pair of square brackets:

df.iloc[:, 0]

PYTHON

0 3.455582
1 3.669026
2 2.789910
3 2.939900
4 5.426060
5 0.715811
6 5.652390
7 3.571320
8 4.300067
9 1.369419
10 2.550962
11 2.894129
12 3.664987
13 1.362779
14 3.718798
15 1.865868
16 3.272809
17 3.917591
Name: calcium, dtype: float64

OUTPUT

df.iloc[0:3, 0]

PYTHON

0 3.455582
1 3.669026
2 2.789910
Name: calcium, dtype: float64

OUTPUT

df.iloc[[2, 4, 7], 0]

PYTHON

Similarly, we can access values from multiple columns:

To pick only the even rows from the two columns, note the following colon notation:

The number after the second colon indicates the stepsize.

Select data from DataFrame

Display the calcium and sodium concentrations of all patients - except the first. Check the model solution at the bottom for options.

2 2.78991
4 5.42606
7 3.57132
Name: calcium, dtype: float64

OUTPUT

df.iloc[[2, 4, 7], :]

PYTHON

 calcium sodium
2 2.78991 105.821810
4 5.42606 97.931489
7 3.57132 112.647360

OUTPUT

df.iloc[:18:2, :]

PYTHON

 calcium sodium
0 3.455582 112.690980
2 2.789910 105.821810
4 5.426060 97.931489
6 5.652390 112.871500
8 4.300067 132.031720
10 2.550962 117.373730
12 3.664987 105.346410
14 3.718798 125.021060
16 3.272809 117.588040

OUTPUT

PRACTICE EXERCISE 2

Solution

Mixing the different methods of accessing specific data in a DataFrame can be confusing, and requires practice and diligence.

Search for missing values
Some tables contain missing entries. You can check a DataFrame for such missing entries. If no missing entry is found, the function isnull
will return False.

This shows that there are no missing entries in our DataFrame.

df[['calcium', 'sodium']][1:]

PYTHON

 calcium sodium
1 3.669026 125.663330
2 2.789910 105.821810
3 2.939900 98.172772
4 5.426060 97.931489
5 0.715811 120.858330
6 5.652390 112.871500
7 3.571320 112.647360
8 4.300067 132.031720
9 1.369419 118.499010
10 2.550962 117.373730
11 2.894129 134.052390
12 3.664987 105.346410
13 1.362779 123.359490
14 3.718798 125.021060
15 1.865868 112.075420
16 3.272809 117.588040
17 3.917591 101.009870

OUTPUT

df.isnull().any()

PYTHON

calcium False
sodium False
dtype: bool

OUTPUT

Find NaN in DataFrame

In the Loan dataset, check the entry ‘Self-employed’ for ID LP001059. It shows how a missing value is represented as ‘NaN’ (not a
number).

Verify that the output of isnull in this case is True

Solution

Basic data features:

Summary Statistics
To get a summary of basic data features, it is possible to use the function describe:

PRACTICE EXERCISE 3

df_loan['Self_Employed'][8]

PYTHON

nan

OUTPUT

df_loan['Self_Employed'][8:9].isnull()

PYTHON

8 True
Name: Self_Employed, dtype: bool

OUTPUT

description = df.describe()

description

PYTHON

The describe function produces a new DataFrame (here called ‘description’) that contains the number of samples, the mean, the standard
deviation, 25th, 50th, 75th percentile, and the minimum and maximum values for each column of the data. Note that the indices of the rows
have now been replaced by strings. To access rows, it is possible to refer to those names using the loc property. Thus, in order to access the
mean of the calcium concentrations from the description, each of the following is valid:

Use your own .csv dataset to practice. (If you don’t have a dataset at hand, any excel table can be exported as .csv.) Firstly, read it
into a DataFrame, and proceed by checking its header, accessing individual values or sets of values etc. Create a statistical summary
using describe, and check for missing values using .isnull.

Solution

[ad libitum]

Iterating through the columns
Now we know how to access all data in a DataFrame and how to get a statistical summary statistics over each column.

Here is code to iterate through the columns and access the first two concentrations:

 calcium sodium
count 18.000000 18.000000
mean 3.174301 115.167484
std 1.306652 10.756852
min 0.715811 97.931489
25% 2.610699 107.385212
50% 3.364195 115.122615
75% 3.706355 122.734200
max 5.652390 134.052390

OUTPUT

Option 1
description.loc['mean']['calcium']

Option 2
description.loc['mean'][0]

Option 3
description['calcium']['mean']

Option 4
description['calcium'][1]

PYTHON

3.1743005405555555
3.1743005405555555
3.1743005405555555
3.1743005405555555

OUTPUT

PRACTICE EXERCISE 4

As a slightly more complex example, we access the median (‘50%’) of each column in the description, and add it to a list:

This approach is useful for DataFrames with a larger number of columns. For instance, it is possible to follow this by creating a boxplot or
histogram for the means, medians etc. of the DataFrame, thus giving a comprehensive overview of all (comparable) columns.

Selecting a subset based on a template
Often, an analysis of a dataset may required on only part of the data. This can often be formulated by using a logical condition which
specifies the required subset.

For this we will assume that some of the data are labelled ‘0’ and some are labelled ‘1’. Let us therefore see how to add a new column to our
Evereleys DataFrame, which contains the labels (which are, in this example, arbitrary).

Firstly, we can randomly create as many labels as we have rows in the DataFrame. We can use the randint function, which can be
imported from the numpy.random module of the NumPy library. In its simplest form, the randint function accepts two arguments. Firstly,
the upper bound of the integer needed, which defaults to zero. As Python is exclusive of the upper bound, providing ‘2’ will thus yield either ‘0’
or ‘1’ only.

for col in df:

 print(df[col][0:2])

PYTHON

0 3.455582
1 3.669026
Name: calcium, dtype: float64
0 112.69098
1 125.66333
Name: sodium, dtype: float64

OUTPUT

conc_medians = list()

for col in df:

 conc_medians.append(df[col].describe()['50%'])

print('The columns are: ', list(df.columns))
print('The medians are: ', conc_medians)

PYTHON

The columns are: ['calcium', 'sodium']
The medians are: [3.3641954, 115.122615]

OUTPUT

Note how we obtain the number of rows (18) using len function and do not explicitly state it in the code.

Next, we must create a new data column in our df DataFrame which contains the labels. In order to create a new column, you may simply
refer to a column name that does not yet exist, and subsequently assign values to it. Let us call it ‘gender’, assuming that ‘0’ represents male
and ‘1’ represents female.

As gender specification can include more than two labels, try to create a column with more than two randomly assigned labels e.g. (0, 1, 2).

Now we can use the information contained in ‘gender’ to filter the data by gender. To achieve this, we use a conditional statement. Let us
check which of the rows are labelled as ‘1’:

from numpy.random import randint

no_rows = len(df)

randomLabel = randint(2, size=no_rows)

print('Number of rows: ', no_rows)
print('Number of Labels:', len(randomLabel))
print('Labels: ', randomLabel)

PYTHON

Number of rows: 18
Number of Labels: 18
Labels: [0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0]

OUTPUT

df['gender'] = randomLabel

df.head()

PYTHON

 calcium sodium gender
0 3.455582 112.690980 0
1 3.669026 125.663330 1
2 2.789910 105.821810 0
3 2.939900 98.172772 1
4 5.426060 97.931489 1

OUTPUT

df['gender'] == 1

PYTHON

If we assign the result of the conditional statement (a boolean: True or False) to a variable, then this variable can act as a template to filter
the data. If we call the DataFrame with that variable, we will only get the rows where the condition was found to be True:

Using the boolean, we only pick the rows that are labelled ‘1’ and thus get a subset of the data according to the label.

Using a template

Modify the code to calculate the number of samples labelled 0 and check the number of rows of that subset.

0 False
1 True
2 False
3 True
4 True
5 True
6 True
7 False
8 True
9 False
10 True
11 False
12 False
13 False
14 True
15 True
16 True
17 False
Name: gender, dtype: bool

OUTPUT

df_female = df['gender'] == 1

df[df_female]

PYTHON

 calcium sodium gender
1 3.669026 125.663330 1
3 2.939900 98.172772 1
4 5.426060 97.931489 1
5 0.715811 120.858330 1
6 5.652390 112.871500 1
8 4.300067 132.031720 1
10 2.550962 117.373730 1
14 3.718798 125.021060 1
15 1.865868 112.075420 1
16 3.272809 117.588040 1

OUTPUT

PRACTICE EXERCISE 5

Solution

Visualisation of data
It is easy to see from the numbers that the concentrations of sodium are much higher than those of calcium. However, to incorporate
comparisons of medians, percentiles and the spread of the data, it is better to use visualisation.

The simplest way to visualise data, is to use Pandas’ functionality which offers direct methods of plotting your data. Here is an example
where a boxplot is created for each column:

from numpy.random import randint
no_rows = len(df)
randomLabel = randint(2, size=no_rows)
df['gender'] = randomLabel
df_male = df['gender'] == 0
no_males = len(df[df_male])
print(no_males, 'samples are labelled "male".')

PYTHON

7 samples are labelled "male".

OUTPUT

df = read_csv("data/everleys_data.csv")
df.boxplot()

PYTHON

By default, boxplots are shown for all columns if no further argument is given to the function (empty round parentheses). As the calcium plot
is quite condensed, we may wish to visualise it, separately. This can be done by specifying the calcium column as an argument:

Boxplot of calcium results
df.boxplot(column='calcium')

PYTHON

Plots using Matplotlib

Matplotlib is a comprehensive library for creating static, animated and interactive visualizations in
Python.

The above is an easy way to create boxplots directly on the DataFrame. It is based on the library Matplotlib and specifically uses the pyplot
library. For simplicity, this code is put into a convenient Pandas function.

However, we are going to use Matplotlib extensively later on in the course, and we will therefore start by introducing a more direct and
generic way of using it.

To do this, we import the function subplots from the pyplot library:

The way to use subplots is to first set up a figure environment (below referred to in the code as an object titled ‘fig’) and an empty
coordinate system (below referred to as object ‘ax’). The plot is then created using one of the many methods available in Matplotlib. We will
proceed by applying it to the coordinate system, ‘ax’.

As an example, let us create a boxplot of the calcium variable. As an argument of the function we need to specify the data. We can use the
values of the ‘calcium’ concentrations from the column with the same name:

from matplotlib.pyplot import subplots, show

PYTHON

https://matplotlib.org/
https://matplotlib.org/stable/api/pyplot_summary.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot%7C

Note how we define the title of the plot by referring to the same coordinate system ax.

The value of subplots becomes apparent when it is used to generate more than one plot as part of a single figure: one of its many useful
features.

Here is an example whereby we create two boxplots adjacent to each other. The keyword arguments to use is ‘ncols’ which is the number of
figures per row. ‘ncols=2’ indicates that you are plotting two plots adjacent to each other.

fig, ax = subplots()

ax.boxplot(df['calcium'])

ax.set_title('Boxplot of Everley Calcium')

show()

PYTHON

fig, ax = subplots(ncols=2)

ax[0].boxplot(df['calcium'])
ax[0].set_title('Calcium')

ax[1].boxplot(df['sodium'])
ax[1].set_title('Sodium');

show()

PYTHON

Each of these subplots must now be referred to using indexing the coordinate system ‘ax’. This figure gives a good overview of the Everley’s
data.

If you prefer to have the boxplots of both columns in a single figure, this can also be done:

fig, ax = subplots(ncols=1, nrows=1)

ax.boxplot([df['calcium'], df['sodium']], positions=[1, 2])
ax.set_title('Boxplot of Calcium (left) and Sodium (right)')

show()

PYTHON

Boxplot from Loan data

Plot the boxplots of the ‘ApplicantIncome’ and the ‘CoapplicantIncome’ in the Loan data using the above code.

PRACTICE EXERCISE 6

Solution

Histogram
Another good visual overview for data is the histogram. Containers or ‘bins’ are created over the range of values found within a column, and
the count of the values for each bin is plotted on the vertical (y-)axis.

fig, ax = subplots(ncols=1, nrows=1)
ax.boxplot([df_loan['ApplicantIncome'], df_loan['CoapplicantIncome']], positions=[1, 2])
ax.set_title('Applicant Income (left) & Co-Applicant Income (right)');

show()

PYTHON

fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'])
ax[0].set(xlabel='Calcium', ylabel='Count');

ax[1].hist(df['sodium'])
ax[1].set(xlabel='Sodium', ylabel='Count');

fig.suptitle('Histograms of Everley concentrations', fontsize=15);

show()

PYTHON

This example code also demonstrates how to use methods from within subplots to add labels to the axes, together with a title for the overall
figure.

Unless specified, a default value is used for the generation of the bins. It is set to 10 bins over the range of which values are found. The
number of bins in the histogram can be changed using the keyword argument ‘bins’:

fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'], bins=5)
ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

ax[1].hist(df['calcium'], bins=15)
ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');
fig.suptitle('Histograms with Different Binnings', fontsize=16);

show()

PYTHON

Note how the y-axis label of the right figure is slightly misplaced, and overlapping the border of the left figure. In order to correct for the
placement of the labels and the title, you can use tight_layout automatically adjust for this:

fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'], bins=5)
ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

ax[1].hist(df['calcium'], bins=15)
ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');
fig.suptitle('Histograms with Different Binnings', fontsize=16);
fig.tight_layout()

show()

PYTHON

Create the histogram of a column

Take the loan data and display the histogram of the loan amount that people asked for. (Loan amounts are divided by 1000, i.e. in k£
on the horizontal axis). Use 20 bins, as an example.

PRACTICE EXERCISE 7:

Solution

Handling the Diabetes Dataset
Let us return to the dataset that commenced our exploration of the handling of data within a DataFrame.

Next, we will:

Import the diabetes data from ‘sklearn’
Check the shape of the DataFrame and search for NANs
Get a summary plot of one of its statistical quantities (i.e. mean) for all columns

Firstly, let’s import the dataset and check its head. In some cases, this may take a moment: please be patient, and wait for the numbers to
appear as output below your code cell (if you’re using an IDE).

Histogram of loan amounts in k£
fig, ax = subplots()
ax.hist(df_loan['LoanAmount'], bins=20)
ax.set(xlabel='Loan amount', ylabel='Count');
ax.set_title('Histograms of Loan Amounts', fontsize=16);

show()

PYTHON

If you don’t see all the columns, use the cursor to scroll to the right. Next, let’s check the number of columns and rows.

There are 442 rows organised in 10 columns.

In order o obtain an overview, let us extract the mean of each column using the describe and plot all means as a bar chart. The Matplotlib
function to plot a bar chart is called bar :

from sklearn import datasets

diabetes = datasets.load_diabetes()

X = diabetes.data

from pandas import DataFrame

df_diabetes = DataFrame(data=X)

df_diabetes.head()

PYTHON

 0 1 2 ... 7 8 9
0 0.038076 0.050680 0.061696 ... -0.002592 0.019907 -0.017646
1 -0.001882 -0.044642 -0.051474 ... -0.039493 -0.068332 -0.092204
2 0.085299 0.050680 0.044451 ... -0.002592 0.002861 -0.025930
3 -0.089063 -0.044642 -0.011595 ... 0.034309 0.022688 -0.009362
4 0.005383 -0.044642 -0.036385 ... -0.002592 -0.031988 -0.046641

[5 rows x 10 columns]

OUTPUT

no_rows = len(df_diabetes)
no_cols = len(df_diabetes.columns)

print('Rows:', no_rows, 'Columns:', no_cols)

PYTHON

Rows: 442 Columns: 10

OUTPUT

conc_means = list()

for col in df_diabetes:
 conc_means.append(df_diabetes[col].describe()['mean'])

print('The columns are: ', list(df_diabetes.columns))
print('The medians are: ', conc_means, 2)

PYTHON

Note how the bars in this plot go up and down. The vertical axis, however, has values ranging from -10 to +10 . This means that, for all
practical purposes, all means are zero which is not a coincidence. The original values have been normalised to mean zero for the purpose of
applying a machine learning algorithm to them.

In this example, we can clearly observe the importance of checking the data before working with them.

Exercises

The columns are: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
The medians are: [-2.511816797794472e-19, 1.2307902309192911e-17, -2.2455642172282577e-16, -4.797570083787

OUTPUT

fig, ax = subplots()

bins = range(10)

ax.bar(bins, conc_means);

show()

PYTHON

(-16) (-16)

Download the cervical cancer dataset provided, import it using read_csv.

1. How many rows and columns are there?

2. How many columns contain floating point numbers (type float64)?

3. How many of the subjects are smokers?

4. Calculate the percentage of smokers

5. Plot the age distribution (with, for instance, 50 bins)

6. Get the mean and standard distribution of age of first sexual intercourse

Solution

Pandas package contains useful functions to work with DataFrames.

The iloc property is used to index and slice a DataFrame.

describe function is used to obtain a statistical summary of basic data features.

The simplest method for data visualisation, is to use Pandas’ in-built functionality.

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations, in Python.

END OF CHAPTER EXERCISES

KEY POINTS

