
Time Series
Last updated on 2024-10-20 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Time Series: Plot a DataframeTime Series: Plot a Dataframe

OVERVIEW

Questions

How is time series data visualised?

Why is it necessary to �lter the data?

How do we study correlation among time series data points?

Objectives

Learning ways to display multiple time series.

Understanding why �ltering is required.

Explaining the Fourier spectrum of a time series.

Acquiring knowledge of correlation matrices of time series data.

Data Handling

https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/04-time_series.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/04-time_series.Rmd
http://127.0.0.1:7724/04-time_series.pdf
http://127.0.0.1:7724/04-time_series.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=qWYBBXR8Yrs

Time Series: Function to Plot Time SeriesTime Series: Function to Plot Time Series

Dataframes 1 and 2

Image Handling

Basics of Numpy Arrays

PREREQUISITES

from pandas import read_csv

from numpy import arange, zeros, linspace, sin, pi, c_, mean, var, array
from numpy import correlate, corrcoef, fill_diagonal, amin, amax, asarray
from numpy import around
from numpy.ma import masked_less, masked_greater

from matplotlib.pyplot import subplots, yticks, legend, axis, figure, show

PYTHON

https://www.youtube.com/watch?v=T2Qh7yjHC9M
http://127.0.0.1:7724/01-data_frames_1.html
http://127.0.0.1:7724/03-image_handling.html
http://127.0.0.1:7724/04-time_series.html

Please execute code below, which de�nes a function of our own called plot_series, before proceeding any further. This
function code takes data and creates a plot of all columns as time series, laid out one above the other. When you execute
the function code nothing happens. Similar to an import statement, running a function code will only activate it, making it
available subsequent use. To action the function itself, you must call this after it has been successfully de�ned

PYTHON FUNCTION

def plot_series(data, sr):
 '''
 Time series plot of multiple time series
 Data are normalised to mean=0 and var=1

 data: nxm numpy array. Rows are time points, columns are recordings
 sr: sampling rate, same time units as period
 '''

 samples = data.shape[0]
 sensors = data.shape[1]

 period = samples // sr

 time = linspace(0, period, period*sr)

 offset = 5 # for mean=0 and var=1 normalised data

 # Calculate means and standard deviations of all columns
 means = data.mean(axis=0)
 stds = data.std(axis=0)

 # Plot each series with an offset
 fig, ax = subplots(figsize=(7, 8))

 ax.plot(time, (data - means)/stds + offset*arange(sensors-1,-1,-1));

 ax.plot(time, zeros((samples, sensors)) + offset*arange(sensors-1,-1,-1),'--',color='gray');

 yticks([]);

 names = [str(x) for x in range(sensors)]
 legend(names)

 ax.set(xlabel='Time')

 axis('tight');

 return fig, ax

PYTHON

Example: Normal and Pathological EEG

As an example, let us import two sets of time series data and convert these into NumPy arrays, that we will call data_back and
data_epil. They represent a human electroencephalogram (EEG), as recorded during normal background activity and during an
epileptic seizure, referred to as an absence seizure.

The read_csv function is called in combination with the keyword argument delim_whitespace. When its value is set to True,
this allows the user to import data that are space-separated (rather than comma-separated). If you eyeball the contents of the
data .txt �les, you will notice that the numbers (which represent voltages) are indeed separated by spaces, not commas.

Next, three constants are assigned: The sampling rate (sr) is given in the number of samples recorded per second; the duration of
the recording (period) which is given in seconds; and the number of columns (channels), to be extracted from the recording. Let’s
make use of the �rst 10 columns of data for the remainder of this lesson.

The data are then converted from Pandas DataFrame into a NumPy array.

To see the names of the channels (or recording sensors) we can use the head method as follows:.

The row indices and column names for the seizure data look the same. The names of the recording channels are from the
commonly used 10-20 system used to record voltages of brain activity from the human scalp. As an example, ‘F’ stands for the
frontal lobe.

Next, we can call and make use of the plot function that we de�ned in the �rst block of code, above, in order to plot the data. If we
examine the code in which we de�ned this function, you can see that we have set it to require the speci�cation of two input

df_back = read_csv("data/EEG_background.txt", delim_whitespace=True)
df_epil = read_csv("data/EEG_absence.txt", delim_whitespace=True)

sr = 256 # 1 / seconds
period = 6 # seconds
channels = 10

d1 = df_back.to_numpy()
d2 = df_epil.to_numpy()

data_back = d1[:period*sr:, :channels]
data_epil = d2[:period*sr:, :channels]

PYTHON

df_back.head()

PYTHON

 FP1 FP2 F3 F4 ... EO2 EM1 EM2 PHO
0 -7.4546 22.8428 6.28159 15.6212 ... 13.7021 12.9109 13.7034 9.37573
1 -11.1060 21.4828 6.89088 15.0562 ... 13.7942 13.0194 13.7628 9.44731
2 -14.4000 20.0907 7.94856 14.1624 ... 13.8982 13.1116 13.8239 9.51796
3 -17.2380 18.7206 9.36857 13.0093 ... 14.0155 13.1927 13.8914 9.58770
4 -19.5540 17.4084 11.06040 11.6674 ... 14.1399 13.2692 13.9652 9.65654

[5 rows x 28 columns]

OUTPUT

https://en.wikipedia.org/wiki/10%E2%80%9320_system_(EEG)

arguments: these correspond to the dataset and sampling rate.

plot_series(data_back, sr)
show()

PYTHON

plot_series(data_epil, sr);
show()

PYTHON

Observations

1. Background:

There are irregular oscillations of all recorded brain potentials.

Oscillations recorded at different locations above the brain, differ.

Oscillations are not stable, but are modulated over time.

There are different frequency components evident in each trace.

2. Epileptic Seizure:

There are regular oscillations.

Oscillations recorded at different locations are not identical but similar or at least related in terms of their shape.

Despite some modulation, the oscillations are fairly stable over time.

There are repetitive motifs comprising two major components throughout the recording, a sharp spike and a slow wave.

Task

Quantify features of these time series data to obtain an overview of the data. For a univariate feature we can use the frequency
content. This takes into account the fact that the rows (or samples) are not independent of each other but are organised along the
time axis. In consequence, there are correlations between data points along the rows of each column and the Fourier spectrum can
be used to identify these.

The Fourier spectrum assumes that the data are stationary and can be thought of as a superposition of regular sine waves with
different frequencies. Its output will show which of the frequencies are present in the data and also their respective amplitudes. The
Fourier spectrum is obtained through mathematical processes collectively known as the Fourier Transform, where a signal is
decomposed into its constituent frequencies, allowing each individual frequency component to be analysed and inferences to be
made regarding its periodic characteristics.

For a bivariate feature, we can use the cross-correlation matrix.

Work-Through Example

Check the NumPy array containing the background and seizure data.

There are 1536 rows and 10 columns.

Display data with offset
Take a look at the code used to de�ne the function plot_series. Again, this is the function we are using to create the time series
plot. It requires the input of a data �le where the row index is interpreted as time. In addition, the sampling rate (sr) is required in
order to extract the time scale. The sampling rate speci�es the number of samples recorded per unit time.

The sensors, or recording channels, are assumed to be in the columns.

print(data_back.shape, data_epil.shape)

PYTHON

(1536, 10) (1536, 10)

OUTPUT

The declaration syntax def is followed by the function name and, in parentheses, the input arguments. This is completed with a
colon.

Following the declaration line, the function’s documentation or docstring is contained within two lines of triple backticks. This
explains the function’s operation, arguments and use – and can contain any other useful information pertaining to the operation of
the de�ned function.

Followin the docstring, the main lines of code that operate on the arguments provided by the user, when the function is called.

The function can then be closed using the optional output syntax return and any number of returned variables, anything that
might be used as a product of running the function.

In our example, the �gure environment and the coordinate system are ‘returned’ and can, in principle, be used to further modify the
plot.

def plot_series(data, sr):
 '''
 Time series plot of multiple time series
 Data are normalised to mean=0 and var=1

 data: nxm numpy array. Rows are time points, columns are channels
 sr: sampling rate, same time units as period
 '''

 samples = data.shape[0]
 sensors = data.shape[1]

 period = samples // sr

 time = linspace(0, period, period*sr)

 offset = 5 # for mean=0 and var=1 normalised data

 # Calculate means and standard deviations of all columns
 means = data.mean(axis=0)
 stds = data.std(axis=0)

 # Plot each series with an offset
 fig, ax = subplots(figsize=(7, 8))

 ax.plot(time, (data - means)/stds + offset*arange(sensors-1,-1,-1));

 ax.plot(time, zeros((samples, sensors)) + offset*arange(sensors-1,-1,-1),'--',color='gray');

 yticks([]);

 names = [str(x) for x in range(sensors)]
 legend(names)

 ax.set(xlabel='Time')

 axis('tight');

 return fig, ax

PYTHON

The code below illustrates how to call the function and then add a title and the sensor names to the displayed output:

The variable(s) given to a function, and those produced by it, are referred to as input arguments, and outputs respectively. A
function ordinarily accepts data or variables in the form of one or several such input arguments, processes these, and subsequently
produces a speci�c output.

There are different ways to create functions in Python. In this course, we will be using the keyword def to de�ne our own functions.
This is the easiest, and by far the most common method for de�ning functions. The structure of a typical function de�ned using def
can be see in the plot_series example:

There are several key points about functions that are worth noting:

(fig, ax) = plot_series(data_epil, sr)

names = df_back.columns[:channels]

fig.suptitle('Recording of Absence Seizure', fontsize=16);

legend(names);

show()

PYTHON

The name of a function follows same principles as that of any other variable. It must be in lower-case characters, and it is
strongly suggested that its name bears resemblance to the processes it undertakes.

The input arguments of a function, e.g. data and sr in our example, are essentially variables whose scope is con�ned only to
the function. That is, they are only accessible within the function itself, and not from outside the function.

Variables de�ned inside of a function, should not use the same name as variables de�ned outside. Otherwise they may
override each other.

When de�ning a function, it is important and best practice to write that function to perform only one speci�c task. As such, it can
be used independent of the current context. Try to avoid incorporating separable tasks into a single function.

Once you start creating functions for different purposes you can start to build your own library of ready-to-use functions. This is the
primary principle of a popular programming paradigm known as functional programming.

Filtering
Datasets with complex waveforms contain many different components which may or may not be relevant to a speci�c question.
In such situations it can be useful to �lter your data, ensuring that you are removing speci�c components from the dataset that are
not relevant to your analyses or question. In this context, the term component refers to ‘frequency’, i.e. the number of cycles the
waveform completes per unit of time. A small number refers to low frequencies with long periods (cycles), and a large number
refers to high frequencies with short periods.

Let’s explore a simple example, demonstrating how both low- and high-frequency components can be �ltered (suppressed) in our
example time series.

Let’s begin by de�ning a simple function which takes two additional input arguments: low and high cut-off.

def data_filter(data, sr, low, high):
 """
 Filtering of multiple time series.

 data: nxm numpy array. Rows are time points, columns are recordings
 sr: sampling rate, same time units as period

 low: Low cut-off frequency (high-pass filter)
 high: High cut-off frequency (low-pass filter)

 return: filtered data
 """

 from scipy.signal import butter, sosfilt

 order = 5

 filter_settings = [low, high, order]

 sos = butter(order, (low,high), btype='bandpass', fs=sr, output='sos')

 data_filtered = zeros((data.shape[0], data.shape[1]))

 for index, column in enumerate(data.transpose()):
 forward = sosfilt(sos, column)
 backwards = sosfilt(sos, forward[-1::-1])
 data_filtered[:, index] = backwards[-1::-1]

 return data_filtered

PYTHON

https://en.wikipedia.org/wiki/Functional_programming

The frequency range from 8 to 13 Hz is referred to as alpha band in our EEG. It is thought that this represents a type of idling
rhythm in the brain where the brain is not actively processing sensory input.

data_back_filt = data_filter(data_back, sr, 8, 13)

(fig, ax) = plot_series(data_back_filt, sr)

fig.suptitle('Filtered Recording of Background EEG', fontsize=16);

legend(names);

show()

PYTHON

Band-pass filtered data

Create �gures of the delta (1-4 Hz) band for both the background and the seizure EEG. Note the differences.

PRACTICE EXERCISE 1

Solution

data_back_filt = data_filter(data_back, sr, 1, 4)

(fig, ax) = plot_series(data_back_filt, sr)

fig.suptitle('Delta Band of Background EEG', fontsize=16);

legend(names);

show()

PYTHON

Fourier Spectrum
The Fourier spectrum decomposes the time series into a sum of sine waves. The spectrum gives the coef�cients of each of the sine
wave components. The coef�cients are directly related to the amplitudes required to optimally �t the sum of all sine waves, in order
to recreate the original data.

However, the assumption behind the Fourier Transform, is that the data are provided as an in�nitely long, stationary time series.
These assumptions are invalid, as the data are �nite and stationarity of a biological system is rarely guaranteed. Thus,
interpretation needs to be approached cautiously.

data_epil_filt = data_filter(data_epil, sr, 1, 4)

(fig, ax) = plot_series(data_epil_filt, sr)

fig.suptitle('Delta Band of Seizure EEG', fontsize=16);

legend(names);

show()

PYTHON

Fourier Transform of EEG data
We import the Fourier Transform function fft from the library scipy.fftpack where it can be used to transform all columns at the
same time.

To plot the results of the Fourier Transform, the following steps must be taken.
Firstly, we must obtain a Fourier spectrum for every data column. Thus, we need to de�ne how many plots we want to have. If we
take only the columns in our data, we should be able to display them all, simultaneously.

Secondly, the Fourier Transform results in twice the number of complex coef�cients; it produces both positive and negative
frequency components, of which we only need the �rst (positive) half.

Lastly, the Fourier Transform outputs complex numbers. To display the ‘amplitude’ of each frequency, we take the absolute value of
the complex numbers, using the abs() function.

from scipy.fftpack import fft

data_back_fft = fft(data_back, axis=0)

PYTHON

no_win = 2

rows = data_back.shape[0]

freqs = (sr/2)*linspace(0, 1, int(rows/2))

amplitudes_back = (2.0 / rows) * abs(data_back_fft[:rows//2, :2])

fig, axes = subplots(figsize=(6, 5), ncols=1, nrows=no_win, sharex=False)

names = df_back.columns[:2]

for index, ax in enumerate(axes.flat):
 axes[index].plot(freqs, amplitudes_back[:, index])
 axes[index].set_xlim(0, 8)
 axes[index].set(ylabel=f'Amplitude {names[index]}')

axes[index].set(xlabel='Frequency (Hz)');

show()

PYTHON

In these two channels, we can clearly see that the main amplitude contributions lie in the low frequencies, below 2 Hz.

Let us compare the corresponding �gure for the case of seizure activity:

data_epil_fft = fft(data_epil, axis=0)

PYTHON

fig, axes = subplots(figsize=(6, 5), ncols=1, nrows=no_win, sharex=False)

names = df_epil.columns[:2]

amplitudes_epil = (2.0 / rows) * abs(data_epil_fft[:rows//2, :2])

for index, ax in enumerate(axes.flat):
 axes[index].plot(freqs, amplitudes_epil[:, index])
 axes[index].set_xlim(0, 12)
 axes[index].set(ylabel=f'Amplitude {names[index]}')

axes[index].set(xlabel='Frequency (Hz)');

show()

PYTHON

During the seizure, it is clear that the main frequency of the epileptic rhythm is between 2 and 3 Hz.
As we can see from the Fourier spectra generated above, the amplitudes are high for low frequencies, and tend to decrease as the
frequency increases. Thus, it can sometimes be useful to see the high frequencies enhanced. This can be achieved with a
logarithmic plot of the powers.

fig, axes = subplots(figsize=(6, 6), ncols=1, nrows=no_win, sharex=False)

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_back[:, index])
 axes[index].set_xlim(0, 30)
 axes[index].set(ylabel=f'Amplitude {names[index]}')
 axes[index].set_yscale('log')

axes[no_win-1].set(xlabel='Frequency (Hz)');
fig.suptitle('Logarithmic Fourier Spectra of Background EEG', fontsize=16);

show()

PYTHON

And for the seizure data:

fig, axes = subplots(figsize=(6, 10), ncols=1, nrows=no_win, sharex=False)

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_epil[:, index])
 axes[index].set_xlim(0, 30)
 axes[index].set(ylabel=f'Power {names[index]}')
 axes[index].set_yscale('log')

axes[no_win-1].set(xlabel='Frequency (Hz)');
fig.suptitle('Logarithmic Fourier Spectra of Seizure EEG', fontsize=16);

show()

PYTHON

In the spectrum of the absence data, it is now more obvious that there are further maxima at 6, 9, 12 and perhaps 15Hz. These are
integer multiples or ‘harmonics’ of the basic frequency at around 3Hz, which we term as the fundamental frequency.

A feature that can be used as a summary statistic, is to caclulate the band power for each channel. Band power is the total power
of a signal within a speci�c frequency range. The band power can be obtained by calculating the sum of all powers within a
speci�ed range of frequencies; this range is also referred to as the ‘band’. The band power, thus, is given as a single number.

Fourier spectra of filtered data

Calculate and display the Fourier spectra of the �rst two channels �ltered between 4 and 12 Hz for the absence seizure
data. Can you �nd any harmonics?

PRACTICE EXERCISE 2

Solution

data_epil_filt = data_filter(data_epil, sr, 4, 12)

data_epil_fft = fft(data_epil_filt, axis=0)

rows = data_epil.shape[0]

freqs = (sr/2)*linspace(0, 1, int(rows/2))

amplitudes_epil = (2.0 / rows) * abs(data_epil_fft[:rows//2, :no_win])

fig, axes = subplots(figsize=(6, 10), ncols=1, nrows=no_win, sharex=False)

for index, ax in enumerate(axes.flat):
 axes[index].plot(freqs, amplitudes_epil[:, index])
 axes[index].set_xlim(0, 12)
 axes[index].set(ylabel=f'Amplitudes {names[index]}')
axes[no_win-1].set(xlabel='Frequency (Hz)');

fig.suptitle('Fourier Spectra of Seizure EEG', fontsize=16);

show()

PYTHON

Cross-Correlation Matrix
As one example of a multivariate analysis of time series data, we can also calculate the cross-correlation matrix.

Let us calculate it for the background:

The diagonal is set to zero. This is done to improve the visual display. If it was left set to one, the diagonal would dominate the
visual impression given, even though it is trivial and uninformative.

Looking at the non-diagonal elements, we �nd:

Two strongly correlated series (indices 5 and 7)

Two strongly anti-correlated series (indices 3 and 4)

A block of pronounced correlations (between series with indices 4 through 9)

corr_matrix_back = corrcoef(data_back, rowvar=False)

fill_diagonal(corr_matrix_back, 0)

fig, ax = subplots(figsize = (8,8))

im = ax.imshow(corr_matrix_back, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.68);

show()

PYTHON

Display the correlation matrix for the seizure data

Calculate the correlation matrix for the seizure data and compare the correlation pattern to the one from the background
data.

PRACTICE EXERCISE 3:

Solution

We �nd - a number of pairs of strongly correlated series - two strongly anti-correlated series (in- dices 3 and 4) - a block of
pronounced correlations between series with indices 4 through 9).

So interestingly, while the time series changes dramatically in shape, the correlation pattern still shows some qualitative
resemblance.

corr_matrix_epil = corrcoef(data_epil, rowvar=False)

fill_diagonal(corr_matrix_epil, 0)

fig, ax = subplots(figsize = (8,8))

im = ax.imshow(corr_matrix_epil, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.68);

show()

PYTHON

All results shown so far, represent the recording of the segment of 6 seconds we chose at the beginning of the lesson. The human
brain produces time-dependent voltage changes 24 hours a day. Thus seeing only a few seconds provides only a partial view. The
next step is therefore to investigate and demonstrate how the features found for one segment may vary over time.

Exercises

Pathological Human Brain Rhythms
Look at the image of brain activity from a child at the start of an epileptic seizure. It shows 4 seconds of evolution of the
�rst 10 channels of a seizure rhythm at sampling rate sr=1024.

END OF CHAPTER EXERCISES

path = 'data/P1_Seizure1.csv'

data = read_csv(path, delimiter=r"\s+")

data_P1 = data.to_numpy()

sr = 1024

period = 4

channels = 10

plot_series(data_P1[:sr*period, :channels], sr);

show()

PYTHON

Using the code utilised in this lesson, import the data from the �le P1_Seizure1.csv and generate an overview of uni-
and multivariate features in the following form:

1. Pick the �rst two seconds of the recording as background, and the last two seconds as epileptic seizure rhythm. Use
the �rst ten channels of data, in both cases. Using the shape attribute, the data should give a tuple of (2048, 10).

2. Filter the data to get rid of frequencies below 1 Hz and frequencies faster than 20 Hz.

3. Plot time series for both.

4. Fourier Transform both �ltered datasets and display the Fourier spectra of the �rst 4 channels. What are the strongest
frequencies in each of the two datasets?

5. Plot the correlation matrices of both datasets. Which channels show the strongest change in correlations?

Solution

plot_series is a Python function we de�ned to display multiple time series plots.

Data �ltering is applied to remove speci�c and irrelevant components.

The Fourier spectrum decomposes the time series into a sum of sine waves.

Cross-correlation matrices are used for multivariate analysis.

KEY POINTS

